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ABSTRACT

Implicit neural representations (INRs) have demonstrated their ef-
fectiveness in continuous modeling for image signals. However,
INRs typically operate in a continuous space, which makes it dif-
ficult to integrate the discrete symbols and structures inherent in hu-
man language. Despite this, text features carry rich semantic in-
formation that is helpful for visual representations, alleviating the
demand of INR-based generative models for improvement in di-
verse datasets. To this end, we propose EIDGAN, an Efficient scale-
Invariant Dual-modulated generative adversarial network, extending
INRs for text-to-image generation while balancing network’s rep-
resentation power and computation costs. The spectral modulation
utilizes Fourier transform to introduce global sentence information
into the channel-wise frequency domain of image features. The cross
attention modulation, as second-order polynomials incorporating the
style codes, introduces local word information while recursively in-
creasing the expressivity of a synthesis network. Benefiting from the
column-row entangled bi-line design, EIDGAN enables text-guided
generation of any-scale images and semantic extrapolation beyond
image boundaries. We conduct experiments on text-to-image tasks
based on MS-COCO and CUB datasets, demonstrating competitive
performance on INR-based methods.

Index Terms— generative adversarial network, implicit neural
representation, text-to-image generation, style modulation, cross at-
tention, Fourier transform

1. INTRODUCTION

Generative Adversarial Networks (GANs) [1] have emerged as a
prominent approach in the field of computer vision. One particular
variant of GANs that has gained popularity is INR-based GANs. Un-
like traditional GANs which utilize convolutional operations, INR-
based GANs primarily use Multi-Layer Perceptions and take 2D co-
ordinate locations (x, y) as input to generate RGB values for the
corresponding locations in continuous images. However, many of
them still employ a multi-scale training process similar to Style-
GAN. The artificially defined multiple resolution layers significantly
hamper the scale-consistency of INR-based GANs. Additionally, the
simple weight modulation restricts the model’s capacity to learn di-
verse image signals, as it does not adequately consider the frequency
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domain representation and only permits approximation of one-order
polynomial function in the network.

Various visual features and patterns could be effectively de-
scribed using discrete human language. Recently, it has been proven
[2, 3] that the appropriate introduction of textual information can
improve the image quality of different types of generative models.
Nevertheless, existing T2I methods narrowly represent images as
discrete 2D pixel arrays, which are cropped and quantized versions
of the actual continuous natural signals. To delve deeper into con-
tinuous image generation with diverse signal characteristics, our
research primarily focuses on the multi-modal Text-to-Image (T2I)
generation. Extending INRs for T2I generation is a challenging
task, which requires improving the model’s expressivity while deal-
ing with the discrepancy between the continuous representation of
INRs and the discrete nature of linguistic elements.

In this paper, we focus on the style modulation methods as they
improve the performance of GANs and stabilize generator with con-
dition introduction insusceptible to mode collapse issues [4]. To
this end, we design a novel dual modulation technique consisting of
spectral modulation and cross attention modulation to improve the
representation ability of INR-based GANs and integrate them with
text features smoothly and efficiently. The dual modulation lever-
aging sentence and word features extracted from CLIP [5] enables
full control over both local and global aspects of generated images.
Besides, we maintain the inherent properties of INRs by exploiting
thick bi-line representations, which help generate text-guided scale-
equivariant images.

This paper’s key contributions can be summarized as follows:
(1) We propose EIDGAN, an Efficient Scale-equivariant Dual-
modulated INR-based GAN for text-to-image generation, enabling
scale-consistent interpolation outputs and image extrapolation be-
yond training resolution. (2) The dual modulation, consisting of
spectral modulation and cross attention modulation, complemen-
tarily provides continuous spectral representations and high-degree
polynomial representations, facilitating efficient style modulation
with sentence and word features. (3) Extensive experiments show
that EIDGAN achieves comparable performance on image fidelity
and text-image alignment with significantly fewer parameters.

2. RELATED WORK

2.1. INR-based GANs

INR takes the coordinate information of signals (images, 3D shape,
or audio signals) as input and outputs the value at the corresponding
position to represent the target.

INR-based GANs dedicated to 2D image synthesis have ac-
quired an unique transformation capability through coordinate gird
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Fig. 1. EIDGAN architecture overview. The mapping network incor-
porates global and local text features with latent codes. The synthe-
sis network, which employs a thick bi-line representation to improve
memory-efficiency, incorporates dual modulation mechanism.

manipulation. INR-GAN [6] employs a factorized multiplicative
modulation to enhance performance. Recently, some works such as
AnyRes [7], ScaleParty [8], and Creps [9] make efforts on any-scale
image generation leveraging benefits of INR-based GANs’ design.

The work most similar to ours is HyperCGAN [10], which is
also built upon an INR-based GAN architecture. HyperCGAN is the
first job to explore Text to Continuous Image Generation (T2CI).
However, the multi-scale structure leads to scale-inconsistency,
weakening the ability to generate any-scale images. Also, Hyper-
CGAN grapples with the expensive computation costs and high
memory usage associated with full-resolution 2D feature maps.

2.2. Text-to-Image Generation

The T2I generation, extended with the maturity of uni-modal gener-
ation, has shown great potential in creating human-indistinguishable
samples. Many generative models, such as GANs [1] and Diffusion
[11], have been expanded for conditional image generation.

The GANs, which were developed earlier, had significantly
improved in terms of sampling quality and diversity. Notably, Style-
GANv2 [12] innovatively designed a mapping network to modulate
the parameters of the synthesis network, enhancing the control-
lability of image generation. Gansformer [13], StyleFormer [14]
and StyleSwin [15] incorporate attention mechanism [16, 17] with
GANs to explore the probability of leveraging Transformer in the
image generation domain. The T2I GANs can be seen as two stages.
Previously, models such as AttnGAN [18] and DF-GAN [19] used
specially trained text encoders to generate semantically consistent
images. With the emergence of large-scale multi-modal pre-trained
models like CLIP [5], many generative tasks [20] including T2I
GANs become more powerful. Lafite [21] and StyleGAN-T [2]
combines the StyleGANv2 model with CLIP to explore zero-shot
T2I generation. Above all, the attention mechanism has increasingly
assumed a vital role in T2I generation tasks.

3. METHODOLOGY

INRs model images as natural signals and regard the neural network
as a continuous function constrained in image domain. The INR-
based GANs use a generator G to form images by the pixel coor-

dinates and latent codes z ∈ Z. Specially, given an image I of a
resolution H × W and the RGB value c ∈ [0, 1]3, the synthesis
network generates the image as:

I = {G(x, y, z) | (x, y) ∈ mgrid(H,W ), G(x, y, z) 7→ c} (1)

mgrid(H,W ) = {(x, y) | 0 ≤ x < W, 0 ≤ y < H} (2)

where (x, y) is the pixel location sampled from the input coordinate
grid related to resolution of the image. The mgrid(H,W ) repre-
sents the set of pixel locations.

3.1. Efficient Scale-equivariant Network Architectures

The EIDGAN architecture overview shows in Fig. 1. We employ
a thick bi-line representation and design a new dual-modulated
architecture backbone to efficiently improve the expressivity and
smoothly introduce text features. To be specified, we introduce
spectral blocks in both generator and discriminator to process image
signals in the frequency domain, further aligning with the intrin-
sic nature of INRs. And we introduce an efficient cross attention
modulation in the generator to enhance the multi-polynomial repre-
sentation of the model. The memory-efficient representation would
not change the resolution setting equipped with only linear layers
and activation functions during training process.

Let er and ec denote a single 2D grid of normalized (x, y) coor-
dinates for row and column, respectively. The image generation can
be rewritten as:

I = G(er, ec, Z, T ) (3)

where T combines both global and local text features. The more
details will be described next section.

The er and es are first processed into sinusoidal positional en-
coding, and then feed into synthesis block, getting two thick bi-line
representation rH×D and cW×D( D means the small thickness to
enrich network’s performance). As a result, the single feature map
on block n is the dot product of the corresponding elements:

Fn = rn · c⊤n (4)

This composition process is illustrated in the top right corner of
Fig. 1. For an input image at resolution 256×256×3, using a small
thickness of D = 8 results in a parameter size that is 1/32 of the
original one. Although this representation may not enough to model
all details of some complex images, it is adequate for constructing
the overparameterized feature space according to [9].

The intermediate feature map Fn follows the coarse-to-fine de-
sign by StyleGANv2 [12]. The feature map fusion process is car-
ried out in conjunction with the residual connection by the decoder,
which links the full feature map output from each layer. Finally, the
refinement block receives the final feature map and performs style
modulation on the full size.

3.2. Dual Modulation for T2I Generation

Formally, let Xn×d denote input features with the shapes of n vec-
tors and dimension d. On the image case, all coordinates are consid-
ered as an input sequence length, resulting in n = W ×H . In Style-
GANv2’s setting, a mapping network is used to turn latent codes
z ∈ Zd into style codes y ∈ Y d,M : z 7→ y, which then modu-
late the weights of synthesis layers. A general formula for common
modulation update rule can be defined as:

uc(X,Y ) = Mod(W,Y ) ·X (5)
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Fig. 2. Dual Modulation, including Spectral Modulation (a) and
Cross Attention Modulation (b). Sentence features concatenate with
style codes, and word features calculate cross-attention with them.

where W represents weight matrix at different layers. The modula-
tion function Mod is commonly expressed using Hadamard product.

But this modulation method causes style codes to impact only
spatial image features, which restricts the capability of image gen-
eration. We design the dual modulation to improve model’s repre-
sentation power while effectively fusing sentence features and word
features. The dual modulation consisting of spectral modulation and
cross attention modulation is illustrated in the Fig. 2.

Motivated by [22], spectral modulation aims to incorporate style
codes with frequency domain images. INRs demonstrate that em-
ploying only MLP layers within the channel dimension can markedly
help augment the discriminability of global representations, con-
tributing to performance improvements. The spectral modulation
converts physical space into spectral space using a 1D Fast Fourier
Transform (FFT) layer. Particularly, FFT translates image features
into frequency domain, providing a smoother and more continuous
spectral representation X ′. Then style codes are trained to determine
the weights of decomposed frequency components. Lastly, Inverse
Fast Fourier Transform (IFFT) brings the spectral features back to
physical space. The spectral modulation can be defined as:

us(X,Y ) = IFFT(Mod(W,Y )⊙ FFT(X)) (6)

At the text-to-image setting, the sentence features bypass the
mapping network and concatenate with style codes.

The self-attention mechanism can be viewed as one variant of
third-order polynomials, and it can also enhance the expressivity by
capturing long-range dependencies for both image-only and image-
text relationships. Nonetheless, the expansive cost of attention cal-
culation remains a limitation for regular resolutions. Instead of mod-
ulated self attention mechanism [14, 15], the cross attention modu-
lation performs Attention calculation between the lower-rank style
codes and bi-line feature maps, reducing the computational cost of
self-attention, especially in high-resolution feature maps. Also, the
cross attention modulation can be viewed as second-order polynomi-
als, helping to model high-dimension distributions effectively. The
cross attention modulation can be defined as:

ua(X,Y ) = γ(a(X,Y )) ·X + β(a(X,Y )) (7)

a(X,Y ) = Attention(q(X), k(Y ), v(Y )) (8)

where γ(·) and β(·) are linear layers that compute scale factors and
bias factors, and X = X−µ(X)

σ(X)
normalizes the features of X using

means and variances. The q(·),k(·) and v(·) are linear layers that
map elements into queries, keys and values. Intuitively, the style
codes could contribute to the generation of spatial attended regions,
significantly enhancing the controllability of style modulation.

At the text-to-image setting, we extend Z from 1 × d to k ×
d. The word features perform cross attention modulation with style
codes, and the style codes perform cross attention modulation with
feature maps, establishing style codes as the immediate bridge.

Spectral modulation and cross attention modulation allow each
prompt to get fine-grained control over the image generation. Based
on CLIP’s multi-modal alignment capability, we extract the sentence
features T 1×d

global from CLIP text encoder. Furthermore, we extract
word features T l×d

local (the tokenized prompts’ maximum sequence
length l is 77 at CLIP’s settings) from the penultimate layer of a
frozen CLIP text encoder. We incorporate them with spectral modu-
lation and cross attention modulation, termed as dual modulation.

4. EXPERIMENTS

4.1. Experimental Setup

4.1.1. Datasets.

We conduct experiments on two challenging T2I datasets: CUB bird
[23] and MS-COCO [24]. The CUB dataset is challenging in fine-
grained object generation, and the MS-COCO dataset is challenging
in the diverse generation of complex scenes and multiple objects.
4.1.2. Evaluation Metrics.

We adopt the Fréchet Inception Distance (FID) [25] to evaluate
the image fidelity, and adopt the CLIP-R [26] and CLIP-S [27] to
evaluate text-image semantic consistency. Since HyperCGAN is not
open-source, we use the ratio of the clip-R of the generated results to
the clip-R of the real datasets, denoted as CLIP-R′, for comparison.
4.1.3. Implementation Details.

We adopt a standard GAN training procedure similar to the Style-
GANv2 framework to formulate a conditional image generation
baseline. We choose the ViT-B/32 [5] model as the frozen CLIP
model in EIDGAN. We reduce the dimension of latent codes to 64
similar to [2] to save parameters and memory usage.

First, We utilize a wavelet discriminator to detect the peri-
odic artifact pattern in the spectral domain. Slightly different from
StyleSwin [15], we let the first layer of the discriminator process
input images at their original resolution. Then, we hierarchically
downsample the images and apply discrete wavelet transformation
to examine the frequency discrepancy of multi-scaled input.

Second, we use additional contrastive losses to ensure GAN’s
feature space is supervised by the multi-modal alignment of the pre-
trained CLIP. We enforce the discriminator-extracted fake image fea-
ture fD(x) aligned with CLIP processed image feature fI

clip by con-
trastive regularizer as follow:

LConD = −τ
exp(Sim(fD(xi), f

I
clip(xi))/τ)∑n

j=1 exp(Sim(fD(xj), fI
clip(xi)/τ)

(9)

where Sim(·) denotes the cosine similarity, τ is a non-negative
hyper-parameter and xi is the real image sample.

And we further utilize contrastive loss for generator to improve
the semantic correspondence between the synthetic image sample x′

and the sentence features extracted from CLIP text encoder fT
clip:

LConG = −τ
exp(Sim(fclip(x

′
i), f

T
clip(t

global
i ))/τ)∑n

j=1 exp(Sim(fclip(x′
j), f

T
clip(t

global
i )/τ)

(10)



Table 1. T2I comparison results. The best results are indicated in bold, and the second best results are indicated with an underline.

Model Generator COCO CUB Scale-consistent Beyond-boundary

Parameters FID ↓ CLIP-S ↑ CLIP-R′ ↑ FID ↓ CLIP-S↑ CLIP-R′ ↑ Interpolation Extrapolation

AttnGAN [18] 230M 35.49 - 32.77% 23.98 - 119.19%
DF-GAN [19] 19M 21.42 0.2920 29.22% 14.81 0.2972 107.97%
LAFITE [21] 50M 8.21 0.3335 - 14.58 0.3125 -

INR-GANCLIP [6] 73M 31.21 0.2807 68.44% 28.49 0.2721 90.52% ✓

CREPSCLIP [9] 31M 35.90 0.2882 73.87% 22.95 0.2864 91.78% ✓ ✓

HyperCGANword
CLIP [10] 65M 27.21 - 71.55% 16.48 - 72.59% ✓

EIDGAN 18M 20.16 0.3027 87.14% 16.36 0.3074 120.22% ✓ ✓

Table 2. The ablation study of EIDGAN on CUB dataset.

Configuration FID ↓ CLIP-S ↑

EIDGAN 16.36 0.3074
w/o Cross attention modulation 19.23 0.2907
w/o Spectral modulation 18.83 0.3020
w/o Dual modulation 22.95 0.2864

Unconditional baseline 28.07 -

4.2. Comparisons

We compare the efficiency of our EIDGAN with other text-to-
image models on the generator parameters. The results are shown
in Table 1. As a continuous T2I model, we also evaluate the per-
formance of our EIDGAN with several methods in T2I generation
[6, 9, 10, 18, 19, 21], including some state-of-the-art methods and
self-implemented INR-based methods. We establish a baseline
named INR-GANCLIP using INR-GAN [6] architecture and CLIP’s
contrastive loss for T2I generation, compared to the adopted base-
line CREPSCLIP, which employs the same CLIP’s contrastive loss.
As a result, the higher CLIP-S or CLIP-R′ score among INR-based
methods indicates that the dual modulation contributes to the text-
image alignment. Even though our EIDGAN can not beat all of the
other models on performance, the proposed model reaches a com-
petitive result without the convolution operation and with very small
number of parameters. Moreover, EIAGAN has the intrinsic ability
of INRs especially text-guided scale-inconsistent interpolation and
beyond-boundary extrapolation.

4.3. Exploring the Properties

4.3.1. Scale-consistent Interpolation Outputs.

We train our models on 256 × 256 images once and this model
could generate text-guided scale-consistent examples by changing
the sampling rate of gird coordinates in the positional encoding. The
super-resolution examples are shown in the right sub-figure of Fig. 3,
comparing the scaled 512×512 image with the original 2562 image
using bilinear interpolation. The EIDGAN can produce the same
semantic details but sharper when increasing the scale.

4.3.2. Beyond-Boundary Extrapolation Outputs.

The left sub-figure of Fig. 3 shows the ability of EIDGAN to ex-
trapolate beyond image boundaries. After training on a regular coor-
dinate grid, EIDGAN can generate meaningful and context-related
images, producing out-of-the-region results within a suitable range.
The image with description “This bird has a yellow throat...” can

This bird has a yellow 
throat, belly, abdomen 
and sides with lots of 

brown streaks on them

This bird is white with 
grey and has a long 

pointy beak

A public transit bus 
on a city street

A baseball player preparing 
to throw the baseball

x2 Originalx2 Scale

x2 Scale

x2 Original

Fig. 3. Beyond-boundary extrapolation and Scale-consistent inter-
polation outputs. We only train models at a 256× 256 setting.

be extended to generate the yellow throat and include a complete
bird beak outside the original boundary. The image with description
“A public transit bus...” can be extended to generate the continuous
street mentioned by the description. The image with description “A
baseball player...” can also be extended to complete player’s feet.
The semantic extrapolation results demonstrate the effectiveness of
continuous text-image alignment.

4.4. Ablation Study

To verify the effectiveness of EIDGAN, we conduct an ablation
study on the CUB dataset in Table 2. The worst result of uncondi-
tional baseline indicates text features help improve image quality.
The spectral modulation helps achieve better performance on image
quality than regular weight modulation. The cross attention modu-
lation, introducing word features while also enabling second-order
polynomial representation, helps achieve better performance on
both text-image alignment capability and image quality. The dual
modulation together enhances the text-to-image generation ability.

5. CONCLUSIONS

In this paper, we present EIDGAN to extend INRs for text-to-image
generation. Our findings demonstrate that style modulation plays a
crucial role in integrating local and global textual information while
preserving the inherent properties of INR-based GANs. The pro-
posed dual modulation, consisting of spectral modulation and cross
attention modulation, aims to enhance the ability of continuous mod-
eling and high-degree polynomial representation while leveraging
both sentence and word features effectively. EIDGAN achieves a
significant advancement in the field of T2CI generation and pro-
vides an efficient and scalable solution for generating high-quality,
resolution-independent images conditioned on text inputs.
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